1. Consider a one-dimensional (1D) particle with the quadratic dispersion $\xi_{p}=\frac{p^{2}}{2 m}$ in an infinite rectangular potential well

$$
U(x)=\left\{\begin{array}{cc}
0, & |x|<a / 2 \\
\infty, & |x|>a / 2
\end{array}\right.
$$

(a) Find the phase trajectories of the system and plot them in the phase plane.
(b) Compute the area enclosed by the phase trajectory of a particle of energy ε.
(c) Derive the Bohr-Sommerfeld quantisation rule for this system.
2. (2D Maxwell distribution.) Derive the Maxwell distribution for a 2 D gas of quadraticallydispersing molecules.

Hint: to find the coefficient in the exponent, use the equation of state in the form $P=n T$, where n is the 2D concentration of the molecules.
3. Compute the most probable kinetic energy of a molecule in a classical ideal gas (3D), i.e. such a value of the kinetic energy ε that the number of molecules in a given infinitesimal interval of energy $d \varepsilon$ around this value is maximal.
4. Compute the temperature for which the number of molecules in the velocity interval $(v, v+d v)$ in a classical ideal gas is maximal.
5. Compute the average value $\left\langle\frac{1}{p}\right\rangle$ of the inverse momentum p in a classical ideal gas.

