(1) The particle gets reflected from both walls, at $x=\frac{a}{2}$ and $x=-\frac{a}{2}$

(B) The area $S=2 a \sqrt{2 m \varepsilon}=2 a k$
(c) Momenturn quantisation in a rectangular
box: $k_{n}=\frac{\pi \hbar}{a} n$

$$
\oint p d x=S=2 a k_{n}=2 \pi \hbar n
$$

$\oint p d x=2 \pi k n-$ Bohr-Sommerted quantisation rule
(2)

$$
\begin{aligned}
& d n=2 \pi n \cdot\left(\frac{m}{2 \pi T}\right) e^{-\frac{m v^{2}}{2 T}} d V=\frac{n m}{T} e^{-\frac{m V^{2}}{2 T}} d V \\
& d n(\vec{V})=\frac{m n}{2 \pi T} e^{-\frac{m v^{2}}{2 T}} d \vec{V}
\end{aligned}
$$

$$
d n(\vec{v})=\frac{m n}{2 \pi T} e^{-\frac{-}{2 T}} d \vec{v}
$$

(Repeating the derivation from the lecture for 2D)
(3) $\varepsilon_{m}=\frac{T}{2}$
(4) $T=\frac{m v^{2}}{3}$
(5) $\left\langle\frac{1}{p}\right\rangle=\sqrt{\frac{2}{\pi m T}}$

