(1) See Lardau-hitshits, v. $5, \$ 39$
(2) a) $v(\varepsilon)=\frac{m}{2 \pi \hbar^{2}}$
b) $\langle\varepsilon\rangle=T$
c) $\left\langle\varepsilon^{2}\right\rangle=\frac{\int_{0}^{\infty} e^{-\frac{\varepsilon}{T}} \varepsilon^{2} d \varepsilon}{\int_{0}^{\infty} e^{-\frac{\varepsilon}{T}} d \varepsilon}=2 T^{2}$
(3) $\left\langle\hat{S}_{z}\right\rangle=\frac{2 \sinh \left(\frac{B}{T}\right)}{1+2 \cosh \left(\frac{B}{T}\right)}$
(4) $\langle\varepsilon\rangle=\frac{\hbar \omega}{e^{\frac{\hbar \omega}{T}}-1}+\frac{\hbar \omega}{2}$
(5) $\langle u\rangle=T$

Boltrmann distribution: $n=n_{0} e^{-\frac{m q z}{T}}$
Total number of particles: $\quad\left(n_{0}=\frac{P}{T}\right)$

$$
N=\int_{0}^{\infty} n_{0} e^{-\frac{m g z}{4}} S d z=n_{0} S \frac{I}{m g}=\frac{P S}{m g}
$$

$$
C=N\left(\frac{\partial\langle\varepsilon\rangle}{\partial T}+\frac{\partial\langle u\rangle}{\partial T}\right)=N\left(\frac{5}{2}+1\right)=\frac{7}{2} N
$$

assuming diatomic molecules
Note: $C=C_{P}$ (regargless of any assumptions about molecules in the air)

