(1) Thermal expansion coefficient

$$
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}=\frac{1}{V} \frac{\left(\frac{\partial V}{\partial s}\right)_{p}}{\left(\frac{\partial T}{\partial S}\right)_{p}}=\frac{T}{V C_{p}}\left(\frac{\partial v}{\partial S}\right)_{p}
$$

\rightarrow The signs of $\left(\frac{\partial S}{\partial V}\right)_{p}$ and α coincide
(2) $m c \ln \frac{T_{2}}{T_{1}}$
(3) Similarly t (1)
(4)

$$
\begin{aligned}
& \Delta S=\frac{4}{3} \frac{\rho}{T}\left(V_{2}-V_{1}\right) \\
& W=\frac{4}{3} a T_{1}^{3}\left(T_{1}-T_{2}\right)\left(V_{2}-V_{1}\right)
\end{aligned}
$$

Hint: take into account that the internal energy of the radiation clepends on its volume
(5) a) $d E=T d S+f d l$
-f plays the vole of pressure l is the generalised volume

$$
\left(\frac{\partial E}{\partial l}\right)_{T}=T \underbrace{\left(\frac{\partial s}{\partial l}\right)_{T}}_{\begin{array}{c}
\text { Maremell } \\
\text { relation }
\end{array}}+f=-\left(\frac{\partial f}{\partial T}\right)_{l})
$$

\Rightarrow The itternal energy is length-independert
b) $\left(\frac{\partial S}{\partial l}\right)_{T}=-\left(\frac{\partial f}{\partial T}\right)_{l}<0$

