
Important formulas (learn these by heart!)

Note: if the temperature T is measured in Kelvins, but not in the energy
units, then T → kBT in all the equations below; all quantities containing the
change of anything per temperature (e.g., heat capacitance) should also be
multiplied by kB then; you should always be able to recover the Boltzmann
constant from dimensions.

Gibbs Distribution

The Gibbs distribution

wi =
e−

Ei
T

Z
, (1)

the probability that a generic quantum system is in the i-th state.
The grand-canonical (Gibbs) distribution (when the number of particles

N is variable)

wiN =
eµN−EiN

T

Z
, (2)

where iN is the i-th quantum state of a system of N particles.

Classical ideal gas

The Maxwell distribution (follows from the Gibb’s distribution)
The probability that the absolute value of a molecule’s velocity in an ideal

gas (3D) lies in the interval (v, v + dv) is given by f(v)dv, with

f(v) = 4πv2
( m

2πT

) 3
2
e−

mv2

2T . (3)

The probability that a molecule’s velocity in an ideal gas (in 3D) lies in
the element dv near the vector v is given by f(v)dv, with

f(v) =
( m

2πT

) 3
2
e−

mv2

2T . (4)

Important: do not confuse Eqs. (3) and (4)!!!
Boltzmann distribution
If an ideal gas at temperature T is exposed to an external inhomogeneous

potential U(r), then it’s concentration depends on the coordinate r as

n(r) = n0 exp

(
−U(r)

T

)
.

1



Both the Maxwell and the Boltzmann distributions follow from the Gibbs
distribution.

Equation of state:

PV = NT

(in all dimensions!)
Heat capacity

1. Monoatomic gas: CV = 3
2
N

2. Diatomic gas: CV = 5
2
N

3. Each molecule consists of three atoms or more: CV = 3N
Heat capacitance (of an ideal has) at constant pressure: CP = CV +N

Van der Waals equation

(
P + a

N2

V 2

)
(V −Nb) = NT, (5)

a and b are constants.

First law of thermodynamics = energy conservation law

In a quasistatic process

TdS = dE + PdV.

(Hint: in exam problems all processes are usually quasistatic;))
Here TdS is the amount of heat received by the system (quasistatic pro-

cess), dE is the change of the internal energy, PdV is the amount of work.

Thermodynamic potentials

F = E − TS (6)

Φ = E − TS + PV (7)

H = E + PV (8)

Using the differentials of these functions and the first law of thermody-
namics, you should be able to obtain the macroscopic parameters in the
form of derivatives S = −

(
∂F
∂T

)
V

, P = −
(
∂F
∂V

)
T

, S = −
(
∂Φ
∂T

)
P

, V =
(
∂Φ
∂T

)
P

,

S =
(
∂H
∂T

)
S
, V =

(
∂H
∂P

)
T

. There is no need to remember these; they follow in
one step from Eqs. (6)-(8).
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Then, using these derivatives and the equalities like ∂2F
∂T∂V

≡ ∂2F
∂V ∂T

, we
obtain the Maxwell’s relations(

∂P

∂T

)
V

=

(
∂S

∂V

)
T

, (9)(
∂V

∂T

)
P

= −
(
∂S

∂P

)
T

, (10)(
∂T

∂P

)
S

=

(
∂V

∂S

)
P

. (11)

You do not have to remember those so long as you can derive them in two
steps as described above.

Important relation between microscopic and

macroscopic degrees of freedom

When you know the eigenenergies Ei of a quantum system, you may compute

its partition function as Z =
∑

i e
−Ei

T and immediately obtain the free energy
as

F = −T lnZ. (12)

If you consider the free energy F as a function of volume V and temperature
T , the equation of state may be immediately found using P = −

(
∂F
∂V

)
T

(indeed, it’s an equation relating the pressure P , volume V and temperature
T ). The entropy S is given by S = −

(
∂F
∂T

)
V

and may be used to compute,
e.g., the heat received by the system.

Black-body radiation

Stefan-Boltzmann law

j = σT 4 (13)

– the power of the radiation emitted by a unit area of the surface of a black
body; σ is what is called the Stefan-Boltzmann constant (one is extremely
unlikely to be expected to remember its value).

Planck’s law

dEω =
V ~
π2c3

ω3

e
~ω
T − 1

dω (14)
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– the energy of the radiation components of the black-body radiation with
frequencies between ω and ω + dω; V is the volume. You do not need need
to remember this formula if you can derive it in a couple of minutes. If you
can’t derive it that quickly, practice until you can.

Bosonic and fermionic systems

f(ε) =
1

exp
(
ε−µ
T

)
+ 1

(15)

– Fermi-Dirac distribution function

nB(ε) =
1

exp
(
ε−µ
T

)
− 1

(16)

– Bose-Einstein distribution function
When the number of bosons is not conserved (phonons, photons, any

quantum excitations), µ = 0.

Super important

The number of states for a particle in a d-dimensional states in an element
dk of momentum space (assumed to be significantly larger than the scale of
spatial quantisation of momentum)

g
V dk

(2π~)d
, (17)

where g accounts for the degeneracy due to discrete degree of freedom such
as spin, valley and polarisation. Use it when computing thermodynamic
functions, e.g. energy, for systems of (classical or quantum) ideal gases. For
example, you may use it to derive Eq. (14) for an ideal gas of photons.
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